Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites.
نویسندگان
چکیده
Through coarse-grained molecular dynamics simulation, we aim to uncover the rupture mechanism of polymer-nanorod nanocomposites by characterizing the structural and dynamic changes during the tension process. We find that the strain at failure is corresponding to the coalescence of a single void into larger voids, namely the change of the free volume. And the minimum of the Van der Walls (VDWL) energy reflects the maximum mobility of polymer chains and the largest number of voids of polymer nanocomposites. After the failure, the stress gradually decreases with the strain, accompanied by the contract of the highly orientated polymer bundles. In particular, we observe that the nucleation of voids prefers to occur from where the ends of polymer chains are located. We systematically study the effects of the interfacial interaction, temperature, the length and volume fraction of nanorods, chain length, bulk cross-linking density and interfacial chemical bonds on the rupture behavior, such as the stress at failure, the tensile modulus and the rupture energy. The rupture resistance ability increases with the increase of the interfacial interaction, rod length, and bulk cross-linking density. With an increase in the interfacial interaction, it induces the rupture transition from mode A (no bundles) to B (bundles). The transition point of the stress at failure as a function of the temperature roughly corresponds to the glass transition temperature. At longer chain length, a non-zero stress plateau occurs. And excessive chemical bonds between polymers and nanorods are harmful to the rupture property. We find that an optimal volume fraction of nanorods exists for the stress-strain behavior, which can be rationalized by the formation of the strongest polymer-nanorod network, leading to the slowest mobility of nanorods.
منابع مشابه
Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation.
A coarse-grained molecular dynamics simulation was used to investigate the stress-strain behavior of nanorod-filled polymer composites. The effects of the interfacial interaction, aspect ratio of fillers, filler functionalization, chemical couplings between the polymer and the filler and the filler loading on the mechanical reinforcement were explored. The results indicate that there exists an ...
متن کاملMolecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites.
We adopted molecular dynamics simulation to study the conductive property of nanorod-filled polymer nanocomposites by focusing on the effects of the interfacial interaction, aspect ratio of the fillers, external shear field, filler-filler interaction and temperature. The variation of the percolation threshold is anti N-type with increasing interfacial interaction. It decreases with an increase ...
متن کاملMechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study
Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...
متن کاملMolecular Dynamics Simulation of Potassium Chloride Melting (II. Constant Volume and Constant Pressure Simulation of Filled System)
We have used a simple ionic potential to simulate the melting of KCI pseudo-infinite crystal. Two MD simulations, one with constant Volume and the other with constant pressure condition are performed. These results are compared with the previous micro-sample simulation results. In the constant volume simulation the melting temperature increase substantially with increasing pressure. A method fo...
متن کاملAtomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites
Articles you may be interested in Broadband saturable absorption and optical limiting in graphene-polymer composites Appl. Microwave and mechanical properties of quartz/graphene-based polymer nanocomposites Appl. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications J. The importance of bendability in the percolation behavior of carbon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 34 شماره
صفحات -
تاریخ انتشار 2014